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ABSTRACT 

Analytical initial-value method is used to study the growth of longitudinal coupled 
bunch instability in the Fermilab Booster, both under ordinary harmonic potential 
and Landau cavity potential. A general result is given for any resonance mode. The 
numerical evaluation is done using computer programs developed especially for such 
a purpose. The merit of the Landau cavity is discussed. 
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1 Introduction 

In this note we will discuss the result of our attempt to understand the coupled bunch 
instability’ currently observed in the Fermilab Booster, as well as to evaluate possible cure 
by using Landau cavity. In the following we briefly describe the motivation for the study, 
the techniques used, the results and comments. 

1.1 Longitudinal coupled bunch instability in the Fermilab Booster 

With the development of the Tevatron project in Fermilab aimed at colliding beam 
experiments, emphasis has been given to luminosity requirements of the beams. This in turn 
made important the limitation on the beam size in both the Booster and the Main Ring of 
Fermilab at high intensity. About ten bunches of protons are coalesced in the Main Ring to 
enhance the luminosity before injection into the Tevatron. A significant loss in this coalescing 
process due to the size of the individual bunches in the Main Ring led to a reduction in the 
luminosity in the Tevatron collider. To trace the origin of the large bunch area coming out 
of the Booster, a series of experiments have been carried out. Since these will serve as the 
basis of our later analysis, we elaborate on them in the following (The names mentioned 
below do not exhaust all the experimenters involved in these studies.) : 

Figure l-l shows the measurements done by Crispa showing an increase in the Booster 
bunch area right after transition. This is partly due to space charge effects3. Figure 1-2(a) 
shows the equilibrium bunch length with and without space charge for the Booster, where no 
is the ratio of space charge force to the linearized rf force, 0 is the normalized bunch length 
in rf radian, and z is normalized time with transition at I = 0. For a bunch having the right 
equilibrium bunch length before transition, the bucket becomes too short after transition, 
and the bunch length starts executing oscillations about the equilibrium position as shown in 
Figure 1-2(b). This is essentially a quadrupole oscillation and can be seen from the mountain 
range pictures of Figure 1-3(a). This “bunch tumbling” is practically eliminated with the 
installation of the rt-jump system in the Fermilab Booster (Figure 1-3(b)). The elimination 
of the quadrupole oscillations helped highlighting the dipole mode of the longitudinal coupled 
bunch instability, as is clearly visible in Figure 1-3(b). A further set of measurements was 
carried out by Cornacchia and Crisp 4 to identify the cause of the large beam size. The 
transverse beam size was measured with a flying wire and, at the same time, the bunch 
length was also measured with the longitudinal pick-up. Figure 1-4 shows the measured 
beam half size as a function of time in the acceleration cycle. Four of the 18 rf cavities were 
disconnected but not shorted. The beam intensity at high energies was 1.5 x 10” protons 
for a total of 84 bunches. We observe an increase in beam size at transition (- 19 msec after 
injection). We also observe that the horizontal beam six increases at high energies. The 
measured beam size is compared with the calculated value, obtained by adding quadratically 
the contribution of the momentum spread and the horizontal emittance. The momentum 
spread was inferred from the measured bunch length and the known rf parameters, while a 
normalized transverse emittance of 8?r mm-mrad was assumed. The good agreement between 
the two curves indicates that, at this intensity, no bet&on blow up occurs, and that the 
longitudinal instability only is responsible for the observed increase in beam size. The half 
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beam size was next measured with the four disconnected cavities shorted and is plotted in 
Fig. l-5. The increase in beam size at high energies was reduced showing that the growth 
is driven by the rf cavities. The calculated bunch size assuming a constant normalized 
emittance of B?r mm-mrad and a constant bunch area of 0.025 eV-set does not agree with 
the measured value. This demonstrates again that the discrepancy is due to an increase in 
bunch area at higher energies. Figure 1-6 shows the bunch area inferred from the measured 
bunch length as a function of time with four of the rf cavities shorted and also with the 
cavities unshorted. The growth in bunch area at high energies reveals clearly a longitudinal 
instability and that the cavities were responsible for the instability. We suspect that this 
is a longitudinal coupled-bunch instability driven by the parasitic modes of the cavities. 
Figure 1-7(a) shows the beam spectrum taken over the range up to the third harmonic of the 
rf frequency. Various peaks corresponding to the coupled bunch modes are clearly visible. 
Notice that due to the fact that the picture is taken by sweeping a “window” of finite band 
width over the whole range of the frequency in finite time, the relative amplitude among the 
peaks does not necessarily correspond to their real relative amplitude at a given time. We 
can also single out one mode and look at its behavior in the course of time by filtering out 
all the frequencies other than the one corresponding to this mode on the spectrum analyzer 
and sweeping this “window” of narrow bandwidth throughout the cycle. Figure 1-7(b) shows 
such a picture of the coupled bunch mode 16 (frequency 115 MHz) for the last 20 msec of 
the cycle. We can see an increase in amplitude near 22 msec. (The crossing time for this 
mode is 22.3 msec). Finally we show a series of measurements taken by Roland Garoby and 
Steve Holmes where, similar to the usual phase detection technique, a selectable integral 
multiple of the revolution frequency signal is used to sample the beam signal when the 
latter displays a coupled bunch mode with the selected mode number. The resulting signal 
displays a frequency equal to the difference of the two frequencies. This pattern is spectrally 
analyzed to determine the synchrotron mode. This also helps in determining more reliably 
the strengths of individual modes. As we can see from Figure l-8, all coupled bunch modes 
are dominantly dipole modes with a typical sideband separation of 2000 Hz, the synchrotron 
frequency after transition in the Booster. 

Figures 1-7 and 1-8 seem to indicate a real problem with mode 16 (or 68 since we have 
84 bunches). The similar situation was observed in mode 31 (or 53) as can be seen from 
Figure 1-7(a). Table 1 lists 14 resonances of the rf cavities measured by Crisp.s The correct 
shunt impedances and Q’s were calculated by taking the known shunt impedance and Q of 
the fundamental as a reference. We will refer to these resonances frequently by their serial 
numbers as appear in Table 1. These resonances will be crossed by one or more spectral lines 
as the particle is accelerated and coupled-bunch growth of some modes will be excited. Table 
2 shows the average growth rate of each mode driven by the resonances, the principal one 
being bold-faced. However, the two modes mentioned above were the most important ones. 
We conjecture that only resonances number 2 and 4 have been crossed by the spectral lines 
therefore exciting modes near 16 and 53. The frequencies of the other resonances increase 
as the rf cavities are tuned gradually to accommodate higher energies. As a result, these 
resonances may not be crossed by any spectral lines except near extraction where many other 
coupled modes have been observed. It was actually observed that resonances number 2 and 
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4 do not have their frequencies changed during acceleration. 

1.2 Remarks on the calculational techniques 

The purpose of our work is to first seek a reliable computational method which faithfully 
reflects the coupled bunch instability in the Fermilab Booster, and then use this method to 
study the effect of a Landau cavity. Our choice is a combination of analytic and numeri- 
cal techniques aimed at optimizing the efficiency and accuracy of the outcome. We adopt 
Landau’s celebrated treatments of the singularities in the Vlasov equation. The dispersion 
relation is obtained while the system is treated with initial-value-problem techniques, namely, 
in obtaining the frequency domain representations of the quantities, contours in the integral 
transforms are so chosen that the growth is always zero before the onset of the disturbance. 
On the other hand, since the tune spread is of great interest in Landau cavity, we decide not 
to neglect this contribution in the dispersion relation, as opposed to the practice in some 
cases where tune spread is neglected due to its arguable insignificance and the problem is 
greatly simplified. In terms of actual calculation, this amounts to solving the analytically 
continued dispersion relation exactly. Our task is further complicated in the case of the Lan- 
dau cavity because the degeneracy of different coupled bunch modes right in the beginning 
forbids one from singling out one special mode over the others as was pointed out by Krinsky 
and Wang.’ The system has to be addressed as a self-coupled eigenvalue problem. 

The fact that we solve the self consistent dispersion relation means that the exponential 
growth rate as a multiplicative factor at any instant is governed only by the impedance 
and a few other machine parameters, but not by the instantaneous magnitude of either the 
perturbed particle distribution or the perturbed voltage. Therefore the neglect (in fact lack 
of need) of these quantities at every point of our calculation is justified, the only relevant 
quantity being the exponential growth rate itself. 

The treatment of the problem as an initial value problem everywhere in the whole time 
interval avoids the possible mistake which may result from a calculation in the frequency 
domain using Fourier transforms everywhere. The problem of the latter method is that 
the often non-negligible transient effects during the turn-on time is missed.* If a tracking 
simulation is pursued in such a manner, transient effects from both the previous turn and 
the current turn could be overlooked. Such is the problem facing, for example, an ESME 
calculation, where the sum over contributions from previous revolutions is not properly 
reflected in the voltage seen by the particle. This is important when the growth time is long 
enough to demand accurate evaluation of the transient effects. ( We were informed of plans to 
add features that account for such effects in the ESME code.’ ) The use of Laplace transform 
in the calculation presented in this paper ensures the absence of this worry. The Fourier 
transform used in Eq. (2.14) and later equations below in Section 2.1 are just mathematical 
intermediate steps, the inverse Fourier transform being performed later in Eq. (2.34) along 
the causal contour with the correct pole structure of Z( ) w as indicated in the same section. 

We attempt to follow the analytical treatment outlined above. Simplifications are still 
possible and desired whenever made judicially. We then leave the actual solution, both for 
the normal harmonic cavity and for Landau cavity to numerical algorithms outlined in detail 
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in Section 3-1 and Appendix A. 
One merit of our approach is the speed, since a large part of it is done analytically and 

special attention is paid to speeding up the numerical process. This is reflected in the fact 
that the calculation needed for the growth rate in harmonic rf potential throughout the 
latter half cycle (calculated at 1500 points) takes about 40 CPU seconds on a VAX 8650. 
The case for the Landau cavity takes considerably more time due to the absence of equivalent 
mathematical simplifications. (See Section 3-1 and Appendix A) But even in this case the 
calculation is done at a reasonable expense of CPU time. 

1.3 Remarks on the result 

The result of this work is detailed in Sections 3 and 4. The sharp-peak nature of the 
parasitic resonances puts a limit on the effectiveness of the Landau cavity. We see in cases 
where Eq. (4.6) is satisfied Landau cavity cuts down the growth significantly. But the typical 
impedances and Q’s in the Booster do not always lead to such cases. Our conviction is that 
the merit of the Landau cavity would have been better realized if the impedances were either 
lower or higher. This seems to be supported by the simulations we show near the end of 
Section 4. We believe a Landau cavity would have been more effective also in the case 
of broad band impedances. The above argument however does not intend to categorically 
preclude the use of Landau cavities in the Fermilab Booster, as some resonances do satisfy 
Eq(4.6) and are suppressed by Landau cavities. In the event of actual implementation, 
studies of the major offending resonances on a mode by mode basis with various realizations 
of the Landau cavity should be performed. The techniques developed here should be well 
suited for such a task. 

2 Analytical Treatment 

The purpose of the two following sections is to derive the dispersion relations for the 
longitudinal motion in the presence of driving resonances, under the harmonic or the quartic 
(Landau) potentials. Readers uninterested in technical details should proceed directly to the 
dispersion relations (2.44) in Section 2-1 and (2.79) in Section 2-2. 

2.1 The Harmonic Cavity 

We begin by considering the Fermilab Booster with parameters as listed in Table 3. Now 
for a particle arriving ahead of the synchronous one by a time r we have 

dr -yj = -116 
iii = vl pa pc ’ 

where 6 = AE/E is the fractional energy deviation from the synchronous particle, q is the 
frequency dispersion factor and ws the revolution frequency. We also have the other equation 
of motion 
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where 

is the unperturbed longitudinal linear restoring force, w. being the synchrotron frequency. 
Defining 

PC 7=-----q- 
7 

we get 

!T = 6. 
a5 

Then 7 and 15 become canonical variables in the Hamiltonian which reads 

H = ; + F /‘g(#)&’ (2.2) 

If we take @(8,~,6) as the particle distribution for one bunch, Vlasov equation becomes 

g+iEz+Eg=o 

(2.3) 

At this point we need to look at the undisturbed particle distribution. If we take the 
distribution in S-space to be a gaussian one 

*(6,r) = -$&e-“120~p(7), 

then in the steady state case, 

p(r) = &exp [-~J)Tg(++] , 

where Aa is subject to the normalization 

I 
p(r)& = N. 

In the presence of longitudinal impedance we have an extra term for g(r) 

W’P eV(7) g(7) = *’ - -, 
T&E 

(2.5) 

where V(T) and To are the voltage induced by the longitudinal impedance and the revolution 
period respectively. Using the explicit form (2.6) the Vlasov equation (2.3) becomes 

ag q6 a* + w;pT a* Ed a* 
a5 pc ar 

-----=(). 
qc a6 T&E 86 (2.7) 

In the following we will use interchangeably the coordinates (~,6) and the action-angle 
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coordinates (T, up) according to 

where ‘p is the azimuthal angle in the longitudinal phase space of the bunch. Equation(2.7) 
becomes 

47-) a* !Z+-- Ed a* ---=o 
pc ap T&E a6 

and, after the standard procedure of linearizing, 

as + 44 a*, VV dgo - --- 
as PC Brp To@Ew. sinpp = ” 

where q. and q1 stand for the equilibrium and perturbed distributions respectively. Here 
we used the fact that go = ‘PC,(~) only and note there is no aQ,/ar term in Eq. (2.9). 

The remaining task until equation (2.24) is to construct the integral equation in the 
frequency domain for *I by first establishing two independent relations between ‘Z’I and 
the wake potential V(r): one from Vlasov equation and the other from considering the 
resonant interaction between the beam and the cavity impedances. Then V(T) is eliminated 
from these two equations. To proceed, we make Laplace transformations on the quantities 
!P1 and V while at the same time preserve the causal nature of the problem, namely, ‘I’% 
and V should be zero before the onset of the instability, s = 0. This can be done by 
the Fourier decomposition of the synchrotron motion into various modes combined with a 
Laplace transformation in the time domain. 

i,(T,W) = /_: ~e-yy ~ei~+~l(T,p,s) 
~$(T,w) = I_: ~epiz~ /,- ~eiuslcV(T, Lp, 8) sinp 

We grouped V with a sin (o here for later convenience. The inverse Laplace transformations 
for & and fi are 

&(T,8) = Jwlfue-iw81cil(r,w), 

&(T,s) = /wd~e-~““~‘fi(~,w) = J_: $Je-iz~V(r,~,d)sinrp. (2.11) 

The integration path W is taken so that it traverses the complex plane above all poles of Ri 
or I.$ and the real axis as depicted in Figure 2-1. From Eqs. (2.10) and (2.11) we can see the 
following: 

The values of I&(r,s) and &(~,a) (and th erefore ‘@l(~,‘p, s) and V(r,y,s)) do go to zero 
when s < 0, which is desired. 

The values of &(T,w) and R(T,w) are undefined by this transformation for Im(w) < 0 
due to the integration range. Their values have to be obtained through analytic continuation 
across the real axis in the w-plane. 
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Now let us look into the structure of the potential V(T,S). It is the voltage induced in 
the ring through the wake potential W(T) by previous passages of the beam,“’ 

V(7,a) = eLl1 dr’/1 db’@l(#,f,s)W(~‘- r), (2.12) 

where we show the voltage seen by a test particle ahead of the synchronous particle by T, 
due to the preceding particles averaged over one revolution. Notice only the perturbative 
part is considered. L is the length of the structure which generates the wake field. Note 
here we demand W(7) = 0 for T < 0. Equation (2.12) can be taken as the definition of the 
wake potential. If we are looking at long range wake field effects, with all the previous turns 
affecting the induced voltage, we have 

V(r,a) = eL/_,_dr’~Jds’~l(r’,6’,a - vkT$V(kTo + +-T), (2.13) 

where the sum goes over all turn numbers k, with corresponding displaced variables s -+ 
s - vkT0 and 7’ + kTo + 7’. Note the causal nature is still kept since W(T) = 0 for 7 < 0. 

It is worth noting that W(T) is related to the usual complex impedance Z(w) through 

W(7) = J &(w)e-iwr. (2.14) 

Note that Z(W) defined in this way will inherit the causal property of W(T) through its pole 
structures in the w-plane. The example of a resonance at wC, Z(w)=l/[l+i(+~)], 
bears this structure. 

Substituting Eqs. (2.10), (2.12), and (2.14) into Eq. (2.13) we get the following result 
(remembering the variables (T, 6) and (T, 9) are used interchangeably): 

V(7) w) = I 
m dslc iw a ‘V(r, 8) sin ‘p / 

0 -zre 

Since Rl(r, s) = 0 for s < 0, we can extend the lower limit of the ds/c integration from 0 to 
-co. 

V(T, W) = e/p, dr’/ d6’C &(r’,w)eiWVkTo/C sin p / ~~(,l),“‘~‘,-‘~‘(kTo + 7’ - T). 
kl’ 

(2.16) 
using 

& T eikTo(wv/c - ‘d = & T 6(w’ - WV/C - 27rp/Tr,). 

we get 

V(T,W) = &lI dr’~d6’~~eiz’~‘~~~(r’,w)Z(w(~/c)+pwa)e-i(wu/cfpwa)(~rc~~~1-~). 
P 

(2.18) 
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Equation (2.18) gives the expression if there is only one bunch in the ring. For multibunch 
cases with M equal bunches spaced To/M in time from each other, we need to replace 7 by 

(T- kTo/M) and multiply each contribution by a phase factor e 2?rikslM where k = 1,2, . ..M 

and s is the coupled-bunch mode number, and then sum over k. The net effect of the above 
is to dilute the sum over p in Eq. (2.18) by M t imes and a multiplication of M: 

f$(T,W) = /_: gy?qr,w) = 

~/^,~~‘~~6’~~~~e~i~~+i~‘~‘~l,(T~,w)s~n~z(w~)e~iw~(r’cos~‘~rcos~) 
P 

(2.19) 

where wP = y + pwo, and 

j=-co,p=Mjts 

Remembering that 
Ldni6 = Tdrdq 
Pw* 

we have from Eq. (2.19) 

t;(T,W) = 2”e~M~mr’dr’~~~rl(r’,w) 
1’ P 

cs Z(w*) J ge- ilp + iwpT co.9 p . sm p 
I 

G’ 
zne 

i+’ - iw,r’ cos pt (2.20) 

Integrating over ‘p and (o’ using 

k J_: &,eilP - iz 03s P = i-‘Jl(l) (2.21) 

where J!(z) is the Bessel function, we get 

qT,w) = 2re$yM /,- T’dT’~ c &(TI,W) 
I’ P 

@ -w+) (-[)“-l’JI(wpp)JI’(wpp~). 
% T 

Now we can try to use the result we have gotten so far. We multiply the whole Eq. (2.9) by 

,-ilp,iws/c 

and integrate over m da/c J*“‘l - -,G 0 27r 
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and use Eq. (2.22). After lengthy but straightforward manipulations, we get 

?r Z(%) T’dT’~,,(T’,w)J1(wp+)J1’(wpT’)- % 1 
RIO(T) = / (2?r)2e + -i%l(T,$7,0) 

(2.23) 

(2.24) 

where qi(~, (o, 0) is the perturbed distribution at t = 0. 
This is actually an eigenvalue problem with the dimensionality equal to the number of 

possible values for the index 1, which is countably infinite. We cannot solve such a problem 
exactly. However, we notice that if we ignore the usually small coupling between modes with 
different absolute values of 1, for example, coupling between dipole and quadrupole modes, we 
can reduce the problem to one consisting of many eigenvalue problems each corresponding to 
a finite dimensional space approximately decoupled from each other. In the following we will 
limit ourselves to such practice. To go further, we need to use small bunch approximation, 
namely 

J-I(Z) 1: (-l)$@ 

(2.25) 

for small .z and positive integer 1. In the small bunch case we need to retain only the lowest 
synchrotron modes. These are the 1 = 1 and I = -1 modes. Thus Eq. (2.23) becomes 

il(T,W) = l 
% [ 

i&0(T) - 
w- 

ie2y-:;)M F ,,& 2’i~-“w,z(w,) J,- T%T’&‘(T’, W) 1 
(2.26) 

Multiplying Eq. (2.26) by T’ and integrating over dr, we get 

k,(w) = @l(w) - iA?/ U~~f:Bl’i’-rt&(w) 

where 

@l(W) = Lrn dTT.yy-J 
7f 

&o) = J,- dTT3&(T,W) 

A= 

(2.27) 
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Note CP still follows the definition given in Eq. (2.19). Equation (2.27) can be put in the 
following form by considering the 2-space spanned by the two modes I = 1 and 2 = -1 

Let 

I ‘3“ =dr s* = oT wp i w, ’ 
The above equation can be written 

AX=@ (2.29) 

or 

(2.30) 

We want to find the eigensolutions for this system by diagonalizing the matrix A. The 
eigenvalues X can be found to be 

and the diagonalized form of Eq. (2.30) is 

1 0 

I( 

-S+Rl- S-R-1 -S+$ -s-*-1 
(2.32) 

0 1+ iA(S- - S+) i& + k-1 +1+ +-1 

where we dropped the arguments w in the k’s and @‘s. The dispersion relation is contained 
in one of the above equations, to wit 

[l + iA(S- - S+)]&J) = Q(w) (2.33) 

where 
i(w) = ii,(w) + i-,(w) 

G(w) = @l(W) + h(w). 

Therefore we have for the perturbed particle distribution 

R(s/c) = /” hii(w)e-iw8/c = J, dwl ~($T~~~~+) (2.34) 
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and finally we arrive at the dispersion relation for this eigenmode: 

H(w) = 1 + iA(S- - S+) = 1 + iA~m!Ob(T)T’d~ wp y w - wp l+ w = 0. (2.35) 
, a 

Note that our problem is defined so far only for Im(w) > 0. If we want to investigate the 
behavior for s > 0 in Eq. (2.34), we need to analytically continue H(w) across the real axis 
and down to Im(w) < 0. This can be accomplished by 

H(w) = 1 + iA /,- g;(r)?& wp \ w - wp I+ w ) for Im(w) > 0 
8 , 

for Im(w) < 0 (2.36) 

In the case of ordinary rf potential w, is related to f through 

(2.37) 

where r = sin rp. and (o. is the rf phase of the synchronous particle. The spread in w, is due 
to the anharmonic part of the sinusoidal rf potential. Note here hrw, is in rf radian. Now 
we are in the position of finding out the expression for Y?:(T). The equilibrium distribution 
PO(r) is given, for example, in Ref. 7. 

IgO N e44~a/2~2 (2.38) 

(Our T carries a dimension of time and is related to the r in Ref. 7 by a factor of wo), where 
c is the spread in revolution frequency and satisfies 

0 = w, 

where c+, is the bunch length in rf radian and h is the rf harmonic. Thus we have 

*o(~) - e 
-(hw,,r)‘/2u; = ,-T1/2T; (2.39) 

After normalization 
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N = I ‘Po(r,6)d7d6 

P%. 
= ~ 

i2 

I %&,(T,$T)TdTdp 

= >27r 
71 I T!o(T)TdT (2.40) 

where N is the number of particles in one bunch, we get 

q,,(T) = qN 
2nT3’W, e 

-T’/2T; 

c9 
TO = - 

LO 

(2.41) 

Changing variable from T to I = hw,g and define x0 = b+,, Eq. (2.35) becomes for Im(w) > 0 

fW=l+iA&l 0 - --z d*o dz 1 dz 4 - 1 w.(z) - 4 + 1 W.(I) 1 

Qo(x) = @ha4 e-zl/zp; 
27rxpw. 

Further manipulations using Eq. (2.37) give 

H(w)=l-i~/pmdaz3e 
-AL- 

2’i (A- 
l 

y $21” - c= 

where 

(2.43) 

Y= 
4 - w.0 

8W.O . 

Let us concentrate on w near w,. As long as jw - w./ - SW. or y < 1, w is far from -w#, 
or y + (2/a) >> 1. In such cases there is negligible coupling between the 1 = 1 and I = -1 
modes. Thus the second term in the integral in Eq. (2.43) can be dropped. Thus finally we 
arrive at the dispersion relation. 

where 

The I(z) is given by 

H(w) = 1 - i 
xi? 
>I(=) 

.9 

z,Y, WP - w.0 
4 WO4 

(2.44) 

(2.45) 
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1 - ;e”/2E,(z/2) for Im(w) > 0 and R=(w) 2 0, Im(w) < 0 

I(z) = (2.46) 

1 - ge”/2E1(z/2) + ir.ze ‘/’ for Im(w) < 0, Re(w) < 0. 

The analytic continuation is done in the spirit of Eq. (2.36). The structure of the complex 
mapping and the detail of the analytic continuation will be described in Section 3. Also in 
the above E,(z) defined by 

E,(z) = e-‘i2 I 0 

m dt-& 

is known as the complex exponential integral. The result Eq. (2.44) and that of the following 
section Eq. (2.79) will serve as the starting point for our computer calculations. 

Before leaving this section, we examine Eq. (2.34) for the behavior of the perturbed 
distribution in time domain. By enclosing the contour in the lower half plane, we obtain 

R(a/c) = c 
m,H(v,)=O 

[eCiwmtRes (2.47) 

which means the complex frequency shift of the perturbation at this instant is given by 
the root(s) of B(w) = 0. We will single out the one root with the largest imaginary part, 
representing the largest growth. If thi s resonance is further sustained over a long period of 
time, the total growth over time of the perturbation is given by 

Growth - e - I Im(wm(t))dt 

where w,,,(t) is the root with the largest imaginary part solved at time t. 

2.2 The Landau Cavity 

In the case of the addition of a higher harmonic cavity, often known as the Landau 
cavity, the rf voltage waveform is made as flat as possible in the vicinity of the acceleration 
phase 4. in order to enhance the frequency spread induced within a bunch. To achieve this, 
it is not hard to see that a higher harmonic cavity with harmonic number n with respect to 
the rf frequency should have an amplitude kVo and an acceleration phase 4,, satisfying 

nk cos nq& = - cos 4. 

n’k sin n& = - sin 4. (2.49) 

In order to get Eq. (2.49), we enforced the conditions that the first and second derivatives 
of the total voltage vanish at the crossing point of the synchronous particle 
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where 

V’(4) = 0 

V”(l$) = 0 

at 4=0 

at +=O 

V(4) = V&i* (4 + 4,) + k sin (4 + qL)] (2.50) 

Equation (2.49) indicates that among the three higher harmonic parameters, one is arbitrary. 
We will choose it as n. expanding Eq. (2.50) around &, using Eq. (2.49), we get 

(b3 cos 4. = -vo (2.51) 

where 7 is the time advance as defined in the previous section. We can again pursue the 
problem by using a Hamiltonian like the one in Eq. (2.2), but now with the restoring force 

g(r) giv=* by 

in conformity with the change of V(g) f ram the harmonic cavity form of (wjopT)/qc to that 
of Eq. (2.51). Keeping the form of the Hamiltonian of Eq. (2.2) unchanged, we obtain the 
Vlasov equation using Eq. (2.52) 

a* q6 8%’ + w:ow - l)(ho)’ 3aq 

as ~3~ ar 3!qc 
ev(7)e = o. 

T a6 - T&E a6 
(2.53) 

We deviate here from the previous section in the choice of the new variables which will sim- 
plify the Vlasov equation since the action-angle variables corresponding to the new Hamil- 
tonian are no longer the old T and d, defined earlier. 

Starting with the Hamiltonian 

Ho=;+-- p3c wfopT4 (72 - 1) 

71 
4, uwJa 

v . 

6 and T are not canonical variables, thus we choose 

then 

where 

PC T= --7 7) 
a,+ 2!.- ( ) 

“&w-l) 
p3c qc 4! (hwo)“ri’ 

2+& 

(2.54) 

(2.55) 

(2.56) 

a = wfoqz(n* - l)h”w,j 
4!p%4 . 
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Note that 7 is related to the rf phase angle T by 

For a fixed Ha, there exists a maximum 7, F,,,,, which in turn gives 

S=dW. 

The action variable I is defined to be 

(2.57) 

(2.58) 

4& 
= --Pm”,, 

2n 

(2.59) 

where K(f) denotes the complete elliptic integral of the first kind and will be denoted by K 
in the following. Equation (2.59) can be written equivalently: 

(2.60) 

If we introduce a generating functional W(I,?) such that 

cvW(I,F) 
ari 

=diq/~G 

W(I,7) = qImx &yy-Fd? 

the angle variable 4 is obtained through 

4 = aw(Z,+) d~nt.x 
b’~,,,, dI 

From Eqs. (2.60) and (2.61) after some manipulations, this gives 

Iraq--‘= gz77 

cn - = --7/T 1 1 2K(ila mar 5-r 

(2.61) 

(2.62) 

(2.63) 
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where c,(u) is the cosine of the Jacobian elliptic functi0n.l’ Thus from Eqs. (2.58) and (2.63) 
we get the transformation between (?,6) and (I, 4): 

(2.64) 

It can be explicitly shown that the Jacobian of the transformation Eq. (2.64) is unity. How- 
ever, for practical calculation, we want to use some approximation to Eq. (2.64) since the 
series expansion of Eq. (2.64) converges quite fast. Note that 

cn ZK 1 4 = .955Olcosd+ .OO43Ocos3~+ . . . . 
L (2) 1 

We thus write 
3aI (H 

113 

‘= 4&K 
cos 4 

113 
[l - cos @]l’Z. (2.65) 

Now we are ready to add the perturbation due to the longitudinal coupled bunch instability 
to Ho. We can follow exactly the derivation in the previous section except that the variables 
we use are different now. 

Again we have 
H = Ho + Hl 

(2.66) 

where 

just as in the previous section. 
In the new variables Vlasov equation reads 

8% dq5lN’, d’2o dI o 
as + ds d4 + drda=, 

Keeping everything to the correct order of the perturbation, i.e., 

dI aH, azi,aF _ eV(r) 

x=-w= a?; ad T&E 

dd aHo 
413 

z=ar=” 

113 

sin 4 

(2.67) 
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Thus the Vlasov equation is 

~+$z11/3($&)4’3$+ ($&)‘“$$$sin&$=O (2.68) 

We will make a final change of variables on Eq. (2.68) 

where 
T = bhw,,T- = hu,,~~, 

b = qlP”c 

T is the bunch length in rf radian. 
Now the new Vlasov equation reads 

a*, + W.(T) as ‘V; n(huob)%V . 
a8 - -- PC 84 T T&E4&K 

srnd = 0 

where the synchrotron frequency is now defined as 

TJ;; W.(T) E PC2 = -+c& 

and is explicitly amplitude dependent. At this point we need to calculate 

d% ip;=-= 4J;EK d’l’o 
dT r(hw,b)3G dZ 

or equivalently, find out how Q!~(T) is normalized. As before, we have 

‘PobdIdqb 

The distribution takes on the form 

go = ~~-Hdd 

where 

(2.69) 

(2.70) 

(2.71) 

(2.72) 
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gb is the spread in 6 space. Then Eq. (2.71) determines A and 

qo(r) = 2;;;;;);ti e -(T/To)’ 

Of course we still need to determine ag in order to get Q as defined in Eq. (2.72). This can 
be done as follows. First observe that the RMS bunch length r+ in ring radian is given by 

1 J-“, dre-(Th’)4r2 
u; = s 

J_“, dre-(T/TO)4 
= Lrop. 

hZ I’( l/4) 

Using Eq. (2.72), we get 

~+G&(Fj!q]l” 

where 

On the other hand we know that the bunch area S can be given by 

s = 67ru~~9(R/pc) (2.76) 

with R being the circumference. With Eqs. (2.75), (2.76) and the fact that gs = OE/E, we 

g6 = (LE3T)“3 [wJ”(;)-“” (LJ 

(2.74) 

(2.75) 

(2.77) 

This should be inserted back into Eqs. (2.72) and (2.73). The Vlasov equation (2.70) now 
will be treated exactly the same as Eq. (2.9), notice however the different r-dependence in 
the last term. 

Exactly the same transforms as Eqs. (2.10) and (2.11) will be employed. We will not 
repeat the elaborate derivation leading to the counterpart of Eq. (2.27) for the present case 
but only give the result in the following. The only material differences between the two 
results lie in the difference of the T dependence of the equations and the form of QO(~). 

ii,(w) = @r(w) - iAl,& Vi’-” irn $$?&w) 

where 
A= e2M 4Eh2Tow,, c wpz(wp) P 

(2.78) 
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c= 5 
P p=Mj+nj=-co 

s = coupled bunch mode 

qo(7) is given by Eqs. (2.72), (2.73) and (2.77). We again considered only the two dipole 
modes 2 = zkl and used the short bunch approximations for the Bessel functions. 

One fundamental deviation from the previous calculation arises when we realize that the 
two modes I = fl are really degenerate in the unperturbed state due to the quartic potential 
and we can no longer isolate one from the other but have to treat the space spanned by these 
two modes the way we do perturbation theory on degenerate systems’. In short, the practice 
in the previous section of dropping one mode from the final result is not allowed. Thus we 
proceed from the secular equation (2.78), following the line of derivation from Eq. (2.27) to 
Eq. (2.36), and arrive at the dispersion relation for the Landau cavity with both 1 = $1 and 
I = -1 included: 

I 
1-F / 

m &-X4 
dx 

-m z-x 
Im(z) > 0 

with 

H(z) = < 1-F 7’ 
[/ 

m &--I4 
-m z-x 

dx - (i++) 1 Im(z) = 0 

1-F 1 J m &,--c* 
dz - (27&?‘) I+) < 0 , -ca t-x 1 

F = i~wpZ(wp) It.dM 1 

P 7rr(3/4)(E/e)c6 h(na - l)‘/*w.,, 
(2.79) 

‘P denotes the principle value of the integral and la is the electric current per bunch. z is 
related to w through 

2 = wPl(Sw.) 

bw, = ?9(acj)l/* (2.80) 

In contrast had we included only the 1 = $1 mode, the dispersion relation would have been 

H(z) = 1 - F /,- “:-:‘dz 

There is clearly a need for analytic continuation across the positive real axis in the complex 
z-plane in a similar fashion as Eq. (2.45), where the practice of dropping the I = -1 mode 
was acceptable, but not in the current case. 
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3 Numerical Techniques and Results 

3.1 Numerical techniques 

Our starting point is equation (2.44) in the harmonic cavity case and Eq. (2.79) in the 
Landau cavity case. Both of which are of the form 

I(w) = A(E)zfT(E) (3.1) 

Where I(w) is a complicated function of the complex frequency shift w involving all the 
complex integrals and analytic continuations, but independent of the energy, or cycle time. 
It is a characteristic of the particular resonance in question. A(E) is a proportional constant 
which varies with time, and Z,*(E) is a quantity which characterizes the instability-inducing 
impedance for a given mode. 

&R(E) N 5 %a%) 
p=Mj+a,j=-c-0 

~p=Pwl+wP (3.2) 
For our purpose, we will again use short bunch approximation and replace Eq. (3.2) with 

Z& - .$ e-(~P”‘~%pz(Wp) (3.3) 

in order to take advantage of existing formulae ( Ref. 12 ). In the above z+, = wP/wo, (cl/R) 
is the bunch length in ring radian. We also drop the insignificant dependence of Z(w,) on 
the perturbed part of the frequency. 

From the discussions at the end of section 2.1, our purpose is to find the solution u,,,(t) 
of equation (3.1) with the biggest imaginary part for all values of time t, or equivalently, 
energy E. Then we integrate this imaginary part of wm(t) over time. 

Growth rate - r&hn(t)) 

Total Rate N 1;’ dth(w,,,(t)) = J,” dE ($) Im(wn(E)) (3.4) 

The form of Eq. (3.1) suggests the following approach. We first find the mapping 

w - I(w) 

between the complex w-plane and the complex I-plane. This is suggested graphically in 
Figure 2-2(a). Next we follow the value of A(E)Z&E) in the same complex plane of 2 as 
E changes from El to El. This is shown in Figure 2-2(b). It should be remarked that here 
we approximated w with w, in the expression of Z.R. The intersection between the curve in 
Figure 2-2(b) with the family of curves in Figure 2-2(a) determines the solution w, at every 
energy value E. In other words Eq. (3.1) can really be viewed as a mapping of 

E-+&T, 

20 



Note this is multiple valued with cuts in the mapping from w to I(w). We should single out 
the solution of w which has the largest imaginary part and resembles a true resonance. The 
numerical techniques used in computing I(w) will be described below. As for the quantity 
Z&E), the approximation formula of a given mode number given in Ref. 12 is used. It will 
not be duplicated here for economy of space. In order to simulate Booster in reality, the 
time dependence of the accelerating voltage V and accelerating phase 4. are generated by 
empirical routines which give values very close to the actual Booster parameters. Figure 2-3 
shows the value of V and 4. as generated by the empirical formula at different energy vs. 
the actual values. 

3.1.1 Evaluating I(w) 

From the nature of the equation (3.1), some kind of iterative root-seeking algorithm must 
be employed. This implies that it is very important to find fast algorithms to compute the 
integrals in I(w) so that not too much time is lost in the repeated evaluation. On the other 
hand we want to insist on an accuracy of the solution to better than 10m4 in absolute value. 
The task is further complicated by singularities in the integrals. It turns out that we have to 
divide up the complex plane into patches of asymptotic regions and intermediate regions. We 
then use different computation methods in them to ensure accurate local behavior and fast 
result. The reliability and smoothness of the calculation are checked along the boundaries of 
these patches. A master program then combines all these patches and adds in the necessary 
analytic continuation. The description of the master programs can be found in Appendix A. 

3.1.2 Solving for w 

The complex frequency shift w is solved for any given E according to Eq. (3.1) once we 
have the necessary routines to calculate I(w) and A(E)Z.fl(E). An IMSL iterative routine 
ZANLYT is employed to solve for the roots of up to lo-’ accuracy. A “safety valve” is 
built into the program to automaticzdly terminate the iteration and give a warning signal 
when exceedingly large numbers are encountered. The calculation then resumes at the next 
energy value. This is to prevent the program from crashing during execution when the 
iterations get out of control. We observe such occurrences only when the solution does not 
exist because of the “gap” problem discussed in the next section, or when the values given 
are unrealistically large as will be seen towards the end of section 4. Both problems have 
their origin in the limited computer capability to handle large numbers. In realistic cases 
we rarely encounter any numerical disaster and this practice is quite successful in affording 
highly accurate results. 

The time it takes such a program to carry out 1500 iterative solutions for the harmonic 
cavity is roughly 38 CPU seconds on a VAX 8650 mainly due to the possibility of using only 
polynomial expansions in the routines. In comparison the same number of calculations for 
the Landau cavity take about 23 CPU minutes. 
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3.2 Physical properties from the numerical calculation 

Before going on to the result of the integrated growth, we take a look at the physical 
pictures implied by the problem. These are much more easily elucidated once we have the 
computer routines at hand. Figure 2-4 shows the complex plane of I(w) as defined in Eq. (3.1) 
for the harmonic cavity, the lines are contours of constant Im(w), which is indicated by the 
number associated with each line. The thick line corresponds to Im(w) = 0, those below it 
to Im(w) < 0, and those above it to Im(w) > 0. This is actually a simplified picture 
since there is really a cut (see Section 2-1 and Appendix A) along the negative imaginary 
axis in the complex w plane when we map w into I(w). Thi s cut produces a gap which winds 
around the origin indefinitely. The only manifestation of it are the discontinuities in the 
contours seen in the first and fourth quadrants in Figure 2-4. The actual structure of the 
Riemann sheets is too complicated to reproduce in a single graph. This “gap”, however, did 
not give us real problems in the computation since the solutions are in general far from it. 
In the cases where we run into this “gap”, we are far from resonance so it is not physically 
interesting, nor is the contribution big since the gap is quite narrow. It should be stressed 
again here as in Appendix A that if the computer accepted larger numbers, this problem 
would not have existed. 

Figure 2-5 shows the same diagram for Landau cavity. Again the thick line corresponds 
to Im(w) = 0, the ones inside to Im(w) < 0, and the ones outside to 1m(w) > 0. Again this 
is only an oversimplified picture. We see however that there is no “gap” as in the previous 
c&Be due to the fact that we can analytically continue the mapping to the whole w plane. 
Figures 2-4 and 2-5 would be more informative if viewed next to Figure 2-6, showing the 
development in time (or energy) of A(E)Zd(E) f or a typical harmonic cavity and two given 
resonances. The case for Landau cavity is similar. As the energy increases, the beam goes 
through several resonances with the cavity modes, marked by different “circles” in Figure 
2-6. The one above the real axis clearly develops a growth in the beginning. The growth 
rate itself grows with time, only to recede later. The other “circle” on the other hand derives 
nothing but damping from the resonance. If we only look at the intersection of the upper 
circle with Figure 2-4 and plot the time (energy) d evelopment of its imaginary part, we get 
Figure 2-7, in which the resonance pattern is clear. Note near the end the upper circle goes 
into the “gap” and the solution there becomes meaningless, as can be seen from the glitches 
in Figure 2-7. This is however not in the region of interest. We can also look at the real part 
of the intersection minus the unperturbed synchrotron frequency. This is shown in Figure 
2-8, which displays the typical behavior of frequency shifts near a resonance. 

Finally we check our calculations with another example. In equation (2.37) we implied a 
synchrotron tune spread in the harmonic cavity due to the anharmonic part of the acceler- 
ating voltage. This tune spread after all should cause a small but visible Landau damping. 
We on the other hand take a purely harmonic cavity and look at its dispersion relation. This 
amounts to some manipulation of Eq. (2.35), keeping in mind now that w, does not depend 
on r: 

4 = f&i-z 
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where 

(3.5) 

This is a much simpler relation. If we take the growing solution and compare with the 
calculation done using Eq. (2.35), we get Figure 2-9. There is a small but finite damping 
when the tune spread due to anharmonic potential is introduced into the harmonic cavity. 

3.3 Results for harmonic and Landau cavities 

Figures 3-l(a)-(i) show the results of growth rate calculations in various cases. For the 
convenience of getting total growth later, we changed the unit of growth rate from (l/set) to 
(l/MeV) by a scaling factor dE/dt. In the Booster dP/dt follows a sinusoidal pattern and 
is theoretically zero at the end of each cycle. This leads to undesired artifact in the above 
scaling practice. Looking at the real rf data of the Booster, we realized that beyond 8.8 GeV, 
the energy rises at an approximate average rate of 10s MeV/sec. Thus we choose to use the 
relation between dE/dt and E as depicted in Figure 3-2 for our calculation. This small 
discontinuity at 8.8 GeV is therefore responsible for all the non-smooth behaviors displayed 
in Figure 3-l at 8.8 GeV. 

In every individual graph of Figure 3-l shown as growth rate in (l/MeV) vs. energy in 
MeV, the dotted curve represents the harmonic cavity. The header gives the coupled bunch 
mode and driving resonance number as listed in Table 1. 

Table 4 lists the exponent of the total integrated growth defined in Eq. (2.48) according 
to Figure 3-l for both cavities. In summing up the total growth only the positive imaginary 
part of w is included. 

4 Discussions 

Section 3-3 contains the major results of this work. Figure 3-l(c) shows a very satisfac- 
tory effect of the Landau cavity, while Figure 3-l(h) h s ows the Landau cavity more as an 
aggravation than a relief. The rest fill alI the intermediate scenarios. To better understand 
this, we notice that regardless of the special case in question, the behavior near the peak 
of the resonance has a decisive effect on the overall behavior. The correlation between the 
behavior at the peak and the behavior in general is quite visible from Figure 3-l when we 
compare the harmonic cavity with the Landau cavity. The behavior near the peak is however 
much easier to grasp theoretically. Let us look at equations (2.44) to (2.46). If we assume 
right at the peak that the impedance is so large that the tune spread does not play any 
significant role, we can follow what we did at the end of Section 3-2 where the tune spread 
is truly absent. This amounts to taking out the x-dependence in the denominator of the 
integrand and we get the dispersion relation: 

qM&‘: 
IrntAw) = 4x+1,(E/e)~~ (4.1) 

23 



where AU is the complex frequency shift and Ib the current per bunch. This equation is not 
exactly the same as Eq. (3.5) in that there we included both dipole modes a=-1 and a=+1 
whereas here we keep only a=+l. The justification of this is mentioned in Section 2-1. 

In the case of the Landau cavity, both modes have to be included. To be able to carry 
out the integral, we note that 

J = dx 
+se--24 

= -dx 
J 

zse-x4 
-m z--z 0 22 - 9 (4.2) 

and again neglecting the tune spread near the peak amounts to taking out the x-dependence 
in the denominator of the integrand. This gives the dispersion relation: 

where we used the approximation 

1 7?l?( 7/4) 

sK(1/2)aI’(3/4) = “07’ = ” 

(4.3) 

Had we left out the 1 = -1 mode, the simplified growth of Eq. (4.3) would have become 

Im( Aw) = 
11Mb’: Lz 
4np=E/e 6~. =’ (4.5) 

with SW. given in Eq. (2.80). Note the drastic difference between Eq. (4.3) and the incorrect 
Eq. (4.5), especially when Z.t is large. 

Comparing Eq. (4.1) with Eq. (4.3), we can derive the following conclusions: 
a. In the cases where Z.r is very large and therefore the dominant factor, the use of 

Landau cavity would suppress the growth simply by power counting in Eqs. (4.1) and (4.3). 
However, when Zc~ is big enough for the difference between Eqs. (4.1) and (4.3) to be 
appreciable, Eq. (4.3) itself is usually too big for the Landau cavity to look attractive. 

b. In the cases where Z.s is small enough that the tune spread has a dominant effect 
even near the peak, our approximations Eqs. (4.1) and (4.3) break down and don’t teach 
us anything about the growth rates. In this event the dominant tune spread would act 
to discourage any coherent pattern accumulated within the bunch and we also expect the 
Landau cavity to reduce the growth rate significantly. 

c. In the intermediate region where none of the above applies, it requires a detailed 
knowledge of all the factors which have effects on Aw to reach a conclusion. This could be 
difficult since insufficient knowledge of some factor may lead to the failure of a prediction. 
Some of our examples fall in this category. 

The series of graphs in Figure 4-l can best illustrate our point. Figure 4-l(a) shows the 
growth rate for harmonic cavity (dotted line) and Landau cavity (solid line) under the same 
prescribed conditions. Figures 4-l(b) through (g) h s ows the same graphs with the Zc~ scaled 
according to the numbers in the parentheses in the headers. When Z.E is scaled by a factor 
either smaller than 0.2 or bigger than 5.0, Landau cavity produces less growth around the 
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peak, while in the intermediate region it produces more. The discontinuities in the last few 
graphs are results of the “safety valve” mentioned in Section 3-l-2. The general tendency 
however is not missed in these graphs. The unrealistic widths of the peaks in the last few 
graphs could be artifacts of approximations and is not understood at this point. 

Among the three possibilities discussed above, (b) is where a Landau cavity will be useful. 
When dealing with broad band impedances or resonances with weak enough peaks, we can 
in general apply the Landau cavity to suppress the growth. 

Generally speaking, the effectiveness of Landau damping is determined by the competi- 
tion between the growth rate Aw in our calculation and the extent of the synchrotron tune 
spread 6w,. The tune spread is inversely proportional to the time scale during which the 
particles can remain coherent. Any meaningful growth has to take place in a time scale much 
shorter than this one in order not to be wiped out simply by decoherence of the beam. This 
leads to the general criterion for Landau damping: 

Aw < bw, (4.6) 

This can rarely be satisfied at the peak in a general sense. Thus most of the time there will 
be some growth right at the peak even for a Landau cavity. It is also true however that this 
growth could have been bigger without the Landau cavity. Notice we still have the freedom 
to adjust the parameter n in Eq. (2.49) in favor of the inequality (4.6), although technical 
complication may arise from a large n. 

Another point that concerns us is that as mentioned in Section 3-1, we picked the one 
solution with the largest imaginary frequency shift as our solution. This would be unambigu- 
ous if in the integral such as Eq. (2.34) th e number of poles were finite and the integral could 
be represented as a finite sum of the residue contributions. Such is the case for a Lorentzian 
distribution, for example. However, in our current treatment a Gaussian distribution is used 
for the bunches and the above integral can only be represented as an infinite sum. In such a 
case the practice of singling out the solution with the largest imaginary part might lead to 
unreliable results in extreme cases. This is mentioned here pending further clarification. 

To sum up, we achieved an understanding of the coupled bunch instabilities under either a 
harmonic potential or a quartic (Landau cavity) potential. The model we used is the Fermilab 
8 GeV Booster. The result indicates that with the parameters we have, the Landau cavity 
lives up to its promise to various extents depending on how closely the general criterion 
Eq. (4.6) is followed. 
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A Programs for evaluating the functions I(w) 

A.1 The Harmonic Cavity 

A program is written for the function I( ) z in Eq. (2.44). The complex z-plane is di- 
vided up as in Figure A-l. We used 8-point Gauss-Laguerre and 20-point Gauss-Laguerre 
approximations in the asymptotic regions together with the small argument expansion 

I(z) = 1 (IZI = 0) 

= I - 3”/2E1(z/2) (I4 # 0) 

El(z) = 1 -T - lnz - E ” 
n=l nn! 

where r = 0.57721566.... is the Euler’s constant. The shape of the patches is determined 
both to ensure satisfactory local behavior and to avoid singularities of the Gauss-Laguerre 
integrals on the real axis. 

The expansion (A.1) already takes into account the analytic continuation onto the nega- 
tive real axis. Further we will analytically continue across the negative real axis into the 3rd 
quadrant, and therefore push the cut down to the negative imaginary axis. We can not keep 
extending the analytic region in this manner since the term ezp(z) added in this process 
will sometimes exceed the computer tolerance of large numbers when an iterative process is 
involved. Thus we leave this cut in the negative imaginary axis since from experience it does 
not affect anything interesting physically. But the manifestation of this cut can be seen in 
some of our results, as mentioned in Section 3. The fact that we are able to use nothing but 
series expansions to approximate the integral proves to be advantageous in speed when the 
iterative root-seeking routine is applied on this program. 

A.2 The Landau Cavity 

A program is also written to evaluate the integrals in Eq. (2.79). Unfortunately no similar 
small-argument expansion formula is known to exist’s. Thus we are forced to incorporate 
some numerical integration routines in the iterative algorithm, which makes the process 
run much slower, sometimes by a factor of 40 relative to the previous case. The complex 
plane of .s is divided up as in Figure A-2. We again used different computation methods in 
different patches to ensure accuracy and efficiency. In Figure A-2, ZGAUS is the 20-point 
Gauss-Laguerre approximation. ZINTI is a straightforward numerical integration routine. 
In the routine ZPRIN we employed the principle value and residue prescription given in 
Eq. (2.79), which can give accurate result even off (but not far from) the real axis, if we 
adjust the relevant parameters carefully. Finally we also have the “back up” routine ZSM 
prepared for the region where the value of z is too close to the real axis for the numerical 
integration routine ZINTI to work reasonably well, but not close enough so that the principle 

26 



value prescription is valid numerically. Empirically this region is very small for OUT required 
accuracy of 10e4 and other parameters. But in order to avoid any possible adverse effects 
in the iterative root-seeking process and to prepare for a more general situation, we should 
address this problem anyway. Thus the routine ZSM is constructed which picks up the 
finite contributions of the functions which are even about the poles in an infinitesimal region 
around them, and then numerically integrate over the rest. This attempt turns out to be 
successful and eliminates the possibility of discontinuity in the iterative solution. We expect 
this practice to be more important in other cases where more accuracy is required. 

The analytical continuation, however, is more straightforward in our case. Since the 
discontinuity in the mapping runs along the whole real axis, all we need for an analytic 
solution over the whole complex plane is to continue the solution across the whole real axis 
into the lower half plane, therefore eliminating the “gap ” in the mapping which caused 
unpleasant effects in the previous case. 
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Figure captions 

Figure l-l. Bunch area vs. time in the Fermilab Booster. 
Figure 1-2(a) Equilibrium bunch length with and without space charge force. 71 is the 

ratio between space charge force and linearized RF force. Transition happens at z = 0, with 
z the normalized time. 

Figure 1-2(b) Bunch tumbling after transition due to space charge. 
Figure 1-3(a) Mountain range pictures taken in the Fermilab Booster showing the pro- 

nounced “bunch tumbling” due to space charge effects. 
Figure 1-3(b) Mountain range pictures taken in the Fermilab Booster showing the onset 

of the coupled bunch instability. The number next to each graph shows the cycle time in 
ms. Mode 16 starts growing around 22.3 ms. 

Figure 1-4. Measured and calculated beam sizes at various times after injection. Four of 
the 18 cavities are off, but not shorted. 

Figure l-5. Measured and calculated beam sizes with 4 cavities shorted. 
Figure 1-6. Bunch area with shorted and unshorted cavities. 
Figure 1-7(a) Booster beam signal at one pickup as seen from a spectrum analyzer, 

showing all the modes. The first peak to the right of the rf harmonic lines is mode 16. 
Figure 1-7(b) Time development of mode 16 for 20 ms, starting at 16 ms into the cycle. 
Figure 1-8 Some of the “beating patterns” described at the end of Section 1-l showing 

individual coupled bunch modes tracked by an input of integral multiples of the revolution 
frequency. The spectral analysis at the top of each graph shows the deviation of the beam 
signal from the input, and they all lie in the range of the dipole synchrotron oscillation 
frequency. 

Figure 2-1. The integration contour W used in equation (2.11). The lower graph shows 
the closed contour used when s < 0. 

Figure 2-2(a) Graph suggesting the map of w into Z(w) 
Figure 2-2(b) Graph suggesting the time development of A(E)&(E) in the plane of I. 
Figure 2-3. Graphs showing the values of RF voltage and acceleration phase as generated 

by the empirical program vs. the actual value throughout the cycle. 
Figure 2-4. Stability di agram of the harmonic cavity. 
Figure 2-5. Stability diagram of the Landau cavity. 
Figure 2-6. Time development of A(E),&(E) f or mode 45 and two resonances in the 

complex plane. 
Figure 2-7. Growth rate (l/MeV) vs. energy (MeV) for mode 45, resonance 11. 
Figure 2-8. Frequency shift magnified 1000 times (l/set) vs. energy (MeV) for mode 45, 

resonance 11. 
Figure 2-9. Graph showing the growth rate in a harmonic cavity with and without the 

anharmonic synchrotron tune spread. 
Figure 3-l(a) through (h), All graphs are growth rates (l/MeV) vs. energy (MeV). 

The solid line corresponds to the Landau cavity and the dotted line the harmonic cavity. 
The headers show the mode number and serial number of the resonance as listed in Table 1. 
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Figure 3-2. The scaling of dE/dt actually used in the program. 
Figure 4-l(a) through (g), (a) shows the growth rates (l/MeV) of the harmonic cavity 

(dotted line) and Landau cavity (solid Line) vs. energy (MeV). The conditions are given in 
the header. The rest are the same except the effective impedances are scaled by the numbers 
given in the headers. 

Figure A-l. The division of complex a-plane for the evaluation of Z(W) of harmonic cavity. 
The name inside each patch is the routine used. Analytic continuation is used for the lower 
half plane. 

Figure A-2. The division of complex z-plane for the evaluation of Z(w) of Landau cavity. 
The name inside each patch is the routine used. Analytic continuation is used for the lower 
half plane and the same division is reflected about the imaginary axis. The division really 
extends to the real axis and covers the whole first quadrant but is not exactly shown here. 
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Pleasured and calculated beam slzes (Exp. 12/ I O/86) 
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Fig.!-4 Measured and calculated beam sizes at various times after 
injectlon. Four of the 18 cavities are off, but not shorted 
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TABLES 



I Resonance 

L 

Number 

10 
11 
12 
13 

Frequency 
(MHz) 

52.3 
85.8 

109.7 
167.2 
171.5 
225.4 
318.1 
342.6 
391.0 
448.8 
448.8 
559.7 
685.9 

1 Shunt 1 
i 1 Lmpedance 

PR) 

0.43 
1.56 
0.15 
0.07 
0.07 
0.33 
0.09 
0.50 
0.11 
0.48 
0.11 
0.07 
0.71 

Q 

1307 
3380 
2258 
1960 
1190 
2090 
1570 
530 
460 

3590 
1206 
430 

2440 

Table 1: Measured resonant frequency, shunt impedance, and & of the Booster accel- 
erating cavities. 



~ Mode Average Growth Driving Mode Average Growth Driving 
1 

P ratein ms-' RMXELIlCf!S P rate in ms- 

0 0. 
1 0.563 
2 0.695 
3 0.579 
4 0.526 
5 0.474 
6 0.430 
7 0.737 
8 0.404 
9 0.284 
10 0.267 
11 0.252 
12 0.238 
13 
14 0.074 
15 0.045 
16 0.032 
17 0.025 
18 
19 
20 
21 0.106 
22 0.067 
23 0.372 
24 0.269 
25 0.179 
26 0.147 
27 

I:;; 
(7,13) 
(7,131 
(7J3) 
(7J3) 
(7,13) 

(3,7,13) 
(3,7,13) 

(13) 
(13) 
(13) 
(13) 

(4) 

;i; 

(4) 

(5) 
(5) 

(W) 

(W) 

[ii 

34 0.793 
35 0.618 
36 0.506 
37 0.429 
38 0.371 
39 0.326 
40 0.288 
41 3.208 
42 0. 
43 2.344 
44 2.033 
45 1.780 
46 1.548 
47 1.382 
48 0.314 
49 0.285 
50 0.263 
51 0.472 
52 1.111 
53 0.568 
54 0.311 
55 0.279 
56 0.253 
57 0.231 
58 0.213 
59 0.197 
60 0.184 
61 0.172 

RMXlXlC~S 

(9) 

(9) 

(9) 

ii; 

(9) 

(9) 

(C-J) 
(fJ,10,11) 

(w-411) 

(ww) 

(ww) 

(fw,ll) 

(fw,ll) 

(1W) 

(lO,ll) 

(10,ll) 

(12) 
r&12) 

PJ2) 

(12) 

(12) 

(12) 

(12) 

(12) 

(12) 

(12) 

(12) 

(13) 

Table 2: Average growth rate for each mode fi. When there are more than one respon- 
sible driving resonance, the one that contributes the most is bold-faced. 

83 0.751 



Radius 

No. of bunches 

No. of proton per bunch 

Bunch area 

Yt 

0.0250 eV-set 

Table 3: Fermilab Booster parameters. Stationary buckets are assumed. The particle 
momentum follows the curve described below: 

P=A-BcosG(T-H) 

where 
P is the momentum in GeV/C 
T is the time in cycle in ms 
A = 4.76945 GeV/C 
B = 4.11945 GeV/C 
G = 0.0942478 
H = 2.0 ms 



Harmonic Landau 

Mode Res. Total Max. Total Max. 
Growth Growth Energy Growth Growth Energy 

11 set MeV l/set MeV 

14 4 2.91E+O 9.643+2 8798 3.333-l 3.143+2 8788 

16 4 3.353-l 8.10E+2 5800 6.343-2 5.01X3+2 5804 

21 5 3.373+0 9.403+2 8379 O.OOE+O O.OOE+O 

23 6 8.16ESO 4.773-1-3 8012 6.743+0 5.063+3 8054 

43 8 1.26E+l 5.583+3 6898 5.673+0 3.293+3 6944 

45 8 8.653+0 5.823+3 5860 5.273+0 4.123+3 5916 

45 11 9.24E-1 8.543+2 6681 O.OOE+O O.OOE+O 

53 2 6.20E+O 1.243+4 6860 9.893+0 1.353+4 6884 

Table 4: Total growth, maximum growth rate and minimum growth rate for an assorted set 
of coupled bunch modes and driving resonances. Comparison is made here between harmonic 
and Landau cavity potentials. The detail for obtaining the total growth is described in Section 
3-3. The maximum growth rates are determined according to the graphs in Figure 3-l. (Keep 
in mind the different units used there.) The energy values at which these happen are also 
listed. 


